Control of D-octopine formation in scallop adductor muscle as revealed through thermodynamic studies of octopine dehydrogenase.
نویسندگان
چکیده
Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus (Linné, 1758), catalyses the NADH-dependent condensation of l-arginine and pyruvate to d-octopine, NAD(+) and water during escape swimming and subsequent recovery. During exercise, ATP is mainly provided by the transphosphorylation of phospho-l-arginine and to some extent by anaerobic glycolysis. NADH resulting from the glycolytic oxidation of 3-phosphoglyceraldehyde to 1,3-bisphosphoglycerate is reoxidized during d-octopine formation. In some scallops d-octopine starts to accumulate during prolonged, strong muscular work, whereas in other species d-octopine formation commences towards the end of swimming and continues to rise during subsequent recovery. The activity of OcDH is regulated by a mandatory, consecutive mode of substrate binding in the order NADH, l-arginine and pyruvate, as demonstrated by isothermal titration calorimetry. The first regulatory step in the forward reaction comprises the binding of NADH to OcDH with a dissociation constant K(d) of 0.014±0.006 mmol l(-1), which reflects a high affinity and tight association of the apoenzyme with the co-substrate. In the reverse direction, NAD(+) binds first with a K(d) of 0.20±0.004 mmol l(-1) followed by d-octopine. The binary OcDH-NADH complex associates with l-arginine with a K(d) of 5.5±0.05 mmol l(-1). Only this ternary complex combines with pyruvate, with an estimated K(d) of approximately 0.8 mmol l(-1) as deduced from pyruvate concentrations determined in the muscle of exhausted scallops. At tissue concentrations of pyruvate between 0.5 and 1.2 mmol l(-1) in the valve adductor muscle of fatigued P. maximus, binding of pyruvate to OcDH plays the most decisive role in initiating OcDH activity and, therefore, in controlling the onset of d-octopine formation.
منابع مشابه
Insights into the Mechanism of Ligand Binding to Octopine Dehydrogenase from Pecten maximus by NMR and Crystallography
Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD(+), and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and final...
متن کاملEffect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776.
In scallops, gametogenesis leads to mobilization of glycogen and proteins from the adductor muscle towards the gonad. This mobilization is likely to diminish the metabolic capacities of the adductor muscle and thereby the scallops' escape response. We examined the escape response in terms of number of valve claps until exhaustion, rate of clapping and the recovery during and after valve closure...
متن کاملProteomic responses to hypoxia at different temperatures in the great scallop (Pecten maximus)
Hypoxia and hyperthermia are two connected consequences of the ongoing global change and constitute major threats for coastal marine organisms. In the present study, we used a proteomic approach to characterize the changes induced by hypoxia in the great scallop, Pecten maximus, subjected to three different temperatures (10 °C, 18 °C and 25 °C). We did not observe any significant change induced...
متن کاملStructure and function of octopine dehydrogenase of Pecten maximus (great scallop).
This enzymic reaction was discovered in 1959 in some marine invertebrates (Thoai & Robin, 1959). ODH was first isolated from Pecfen maximus (Thoai ef al., 1969). Since then this enzyme has been purified from other invertebrates (Gade, 1980). In molluscs capable of rapid locomotion, or short-term bursts of muscular activity, ODH performs a function similar to that of lactate dehydrogenase in ver...
متن کاملEffect of diet and temperature upon muscle metabolic capacities and biochemical composition of gonad and muscle in Argopecten purpuratus Lamarck 1819.
Recently spawned Argopecten purpuratus broodstock were conditioned at two temperatures and fed three different diets (microalgae, microalgae mixed with lipids and microalgae mixed with carbohydrates) to examine changes in the biochemical composition of gonad and muscle as well as muscle metabolic capacities. During one experiment, scallops were fed at 3% of their dry mass per day whereas during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 9 شماره
صفحات -
تاریخ انتشار 2012